Towards Provably Correct Hardware/Software Partitioning
Using Occam

Edna Barros

Augusto Sampaio

Depto. de Informatica - UFPE *
Caixa Postal 7851 - Cidade Universitaria
CEP 50732-970 Recife - PE - Brazil
{ensb,acas}@di.ufpe.br

Abstract

In this paper we present some ideas towards an
approach to provably correct hardware/software par-
titioning. We use occam as the source programming
language and perform the partitioning by applying a
series of algebraic transformations on the source pro-
gram. The result is still an occam program; its struc-
ture reflects the hardware and software components,
and how they interact to achieve the overall goal. A
simple case study is developed to illustrate the parti-
tioning and to show how the transformations can be
proved to preserve an algebraic semantics of occam.

1 Introduction

Hardware/Software codesign is the design of sys-
tems comprising two kinds of components: specific ap-
plication components and general programmable ones.
The latter kind is referred here as software component
whereas the former is also called hardware component.

An essential aid for hardware/software codesign is
the availability of approaches to hardware/software
partitioning. Some partitioning approaches have been
proposed by De Micheli [7], Ernst [3] and Barros [1].
One of the main challenges of approaches to hard-
ware/software partitioning is the increasing number
of implementation alternatives to be analysed. The
approach proposed by Barros supports a better explo-
ration of the design space permitting that the whole
description be analysed. Additionally, distinct imple-
mentation possibilities of hardware components are
considered during the partitioning process [1].

Although some approaches to hardware/software
partitioning have been suggested, and even some of
them have been implemented, an open problem re-
mains for most approaches: the formal verification
that the partitioning preserves the semantics of the
original description. A provably correct design of a
partitioning algorithm is a challenge in itself and to
our knowledge none of the mentioned approaches has
been formally developed.

This paper aims to propose some ideas towards a
partitioning approach whose emphasis is correctness.

*This work was partially supported by the brazilian research
council CNPq

0-8186-6315-4/94 $04.00 © 1994 IEEE

210

The proposed method uses occam as a description lan-
guage and performs the partitioning of an occam pro-
gram by applying a series of transformations to obtain
a set of parallel processes, one of which will be imple-
mented in software and the others in hardware. The
transformations as well as the strategy which guides
their applications are based on the partitioning ap-
proach proposed by Barros [2, 1].

There are many reasons for choosing occam as the
source programming language. It was developed from
CSP [9], and like CSP occam obeys a large set of
algebraic laws [11] which can be used to carry out
program transformation with the preservation of se-
mantics. Some interesting applications of program
transformation using occam have been reported. In
[6] a general-purpose system is described which allows
mechanised transformations of occam programs. Ba-
sically, it implements the laws given in [11] and an
algorithm which reduces programs to a restricted syn-
tax through the application of laws.

Reduction to a restricted syntax (or a normal form)
has proved useful for many applications. For example,
a provably correct compiler for a sequential subset of
occam is described in [10]. Another application is ex-
plored in [8] which presents a normal form approach
to FPGA 1mplementation of occam programs.

Hardware/software partitioning can also be regard-
ed as an application of program transformation. The
algebraic laws can be used to transform an arbitrary
source program into a program whose structure will re-
flect the software and hardware components, and how
they interact to achieve the overall goal. It is possible
to express this in occam because it includes features
to express parallelism and communication.

This paper is organised as follows: after a short de-
scription of a subset of occam and of some of its alge-
braic laws, an informal description of the partitioning
process is given. The partitioning approach is then
illustrated by a simple case study. This is followed by
some conclusions and proposals for future work. Fi-
nally, in an appendix we briefly illustrate how some
transformations are proved to preserve an algebraic
sermantics of occam.



2 A Language of Communicating Pro-

cesses

The partitioning approach described in this paper
should allow an arbitrary occam program as input.
Nevertheless, at present it deals only with a subset of
the language. For example, procedures and arbitrary
loops are not considered, although we deal with a par-
ticular case of iteration through the use of replicators,
as explained below.

For convenience we sometimes linearise occam syn-
tax in this paper. For example, we may write
SEQ(p1, . ..,pn) instead of the standard vertical style.
The subset of occam used here is defined by the follow-
ing BNF-style syntax definition, where [clause]l has
the usual meaning that clause is an optional item.

P ::=SKIP | STOP | x :=e | ch7x | ch!e
| IF(c1 pi,...,cn pn) | SEQ [rep] (pi,...,pn)
| PAR [rep] (p1l,...,pn) | TYPE x1,...,xm: p
| CHAN OF TYPE chil,...,chn: p

Informally, these processes behave as explained below.

o SKIP has no effect and always terminates suc-
cessfully. STOP is the canonical deadlock process
which can make no further progress. x := e is
executed by evaluating the expression e and then
assigning its value to the variable x.

e ch ? x and ch ! e are the input and the out-
put commands, respectively. They allow paral-
lel processes communicate through channels. The
communication occurs when a given process p is
willing to receive a message and another process
q is ready to send a message through the same
channel (synchronous communication).

e IF is a conditional command which takes a list
of arguments of the form ci pi, where ci is a
boolean expression and pi is a program. It is the
first (that is, lowest index) boolean guard to be
true that activates the corresponding pi.

e SEQ(p1,p2,...,pn) denotes the sequential com-
position of processes p1,p2,...,pn. If the exe-
cution of p1 terminates successfully then the ex-
ecution of p2 follows that of p1, and so on, until
pn is executed.

e PAR(p1,p2,...,pn) stands for the parallel com-
position of processes p1,p2,...,pn. These pro-
cesses run concurrently, with the possibility of
communication between them. Communication
is the only way two parallel processes can affect
one another, so one parallel process cannot access
a variable that another one can modify.

e TYPE x1,...,xn: p declares the local variable
x1,...,xn for use in the process p. TYPE may
be any type available in occam; here we will use
only integer (INT) variables.

211

e CHAN OF TYPE chi,...,chn: p declares the lo-
cal channels chi,...,chn for use in the process
p- Like variables, channels are also typed, and
here we will be confined to integer channels.

The optional argument rep which appears in the SEQ
and in the PAR constructs stands for a replicator of the
form i = m FOR n where m and n are integer expres-
sions. Replicators allow the construction of array of
processes, and they are especially useful to deal with
array variables. For example,

SEQ i = 0 FOR 2 (al[il:=b[il)
is the same as
SEQ(a[0]:=b[0], al[1):=b[1], al2}:=b[2])

A similar idea applies to the use of replicators in par-
allel composition.
Algebraic Laws

In order to carry out program transformation we
need a semantics in addition to the above syntax of
the occam operators. A set of laws which completely
characterise the semantics of WHILE-free occam pro-
grams is given in {11]. In the following we select a
very small subset of these laws which will be used to
illustrate that hardware/software partitioning in the
style suggested in this paper may be proved to be a
semantic-preserving transformation process.

The SEQ operator runs a number of processes in
sequence. If it has no arguments it simply terminates.

L1 SEQ( ) = SKIP

Otherwise it runs the first argument until it terminates
and then runs the rest in sequence. Therefore it obeys
the following associative law.

L2 SEQ(p1,p2,...

,pn) = SEQ(p1,SEQ(p2,...,pn))

It is possible to use the above two laws to transform all
occurrences of SEQ within a program to binary form.
Thus the next laws for SEQ are cast in binary form.

Evaluation of a condition is not affected by what
happens afterwards, and therefore SEQ distributes left-
ward through a conditional.

L3 SEQ(IF(ct pi,...,cnpn), q) =
IF(c1 SEQ(pt,q),...,cn SEQ(pn,q))

Assignment distributes rightward through a condi-
tional, changing occurrences of the assigned variables
in the condition. We use c[e/x] to stand for the sub-
stitution of e for every occurrence of x in c.

L4 SEQ(x:=e, IF(c1 p1,...,cn pn)) =
IF(ci[e/x] SEQ(x:=e,pl),...,
cnle/x] SEQ(x:=e,pn))

A PAR command terminates as soon as all its com-
ponents have; the empty PAR terminates immediately.



LS PAR( ) = SKIP
PAR is an associative operator.

L6 PAR(p1,p2,...,pn) = PAR(p1,PAR(p2,...,pn))

As with SEQ, we can use the above laws to reduce PAR
to a binary operator; thus the rest of the laws deal
only with this case.

PAR is symmetric because the order in which pro-
cesses are combined in parallel is immaterial.

L7 PAR(p1,p2) = PAR(p2,p1)

If one of a pair of parallel processes is a conditional,
then the choice represented by that conditional may
be performed before the parallel construct is entered,
provided the choices are exhaustives!.

L8 PAR(IF(ci p1,...,cnpn), q) =
IF(c1 PAR(p1,q),...,cn PAR(pn,q))

provided (c1 V...V ¢cn) = true

If a parallel component starts by executing an assign-
ment, it can proceed immediately. This is valid be-
cause occam does not allow processes communicate
by using shared variables.

L9 PAR(SEQ(x:=e, p), q) = SEQ(x:=e, PAR(p,q))

As described earlier, communication in occam is syn-
chronous. When two parallel processes synchronise
to communicate through a given channel, the effect is
to assign the value sent by the output process to the
variable of the input process.

L10 PAR(SEQ(ch ? x, p), SEQ(ch ! e, q)) =
SEQ(x := e, PAR(p,q))

The scope of a bound variable? may be increased
without effect, provided it does not interfere with an-
other variable with the same name. Thus each of the
occam constructors has a distribution law with decla-
ration. As illustration we give below the law for PAR.

L11 PAR(VAR x: p, q) = VAR x: PAR(p, q)

provided x is not freein q
Similar laws are valid for channel declarations.

3 The Hardware/Software Partition-
ing Approach

In this section we describe the partitioning ap-
proach through its main concepts. Initially the under-
lying target architecture is presented; this is followed
by a description of the main steps of the partitioning
process.

1The reason for this restriction is that if no choice is true the
conditional behaves like STOP, and this would prevent the PAR
being entered.

2If p is some occam term and x is a variable, we say that
an occurrence of x in p is free if it is not in the scope of any
declaration of x in p, and bound otherwise.

212

3.1 The underlying target architecture
The target architecture underlying the hard-
ware/software partitioning approach can be seen in
Figure 1. The target architecture can be considered
as pre-defined since there is only one software compo-
nent. The hardware components on the other hand
can exhibit distinct degrees of parallelism. Due to the
fact that parallelism in occam is based on message
passing, the memory will be distributed, unlike the
target architecture taken in the original partitioning
approach proposed by Barros [1]. Each set of process-
es kept in the same cluster will have its local variables
stored in the component where it is allocated into.

Sw

microproc.

ﬂéﬂﬁ‘”
HEHEH

Figure 1: The underlying target architecture.

Variables declared by processes kept in different
clusters will be transferred through message passing
by using named channels. Each channel will be named
according to the following rule: a channel named
pi.pj interconnects process pi with process pj and
the message flows from process pi to process pj.

3.2 The Approach

The hardware/software partitioning is based on the
approach proposed by Barros [1]. This approach was
developed considering UNITY specifications but it
can be applied to other description languages, and to
occam in particular. In order to take into account
the target architecture presented earlier, some modi-
fications were made in the cost functions guiding the
clustering process. One of them is the consideration
of communication cost due to message passing.

The main tasks associated with the partitioning ap-
proach are depicted in Figure 2. The tasks represented
by normal boxes belongs to the original approach and
will be explained shortly in this section. The tasks
represented as dashed boxes are new and were includ-
ed in the partitioning approach in order to allow the
verification of the correctness of the partitioning pro-
cess. Such tasks will be explained in Section 4.

According to Figure 2 before the clustering pro-
cess takes place, the set of implementation alterna-
tives is established during the Classification phase by
considering distinct degrees of parallelisin when imple-
menting the original program. The set of implementa-
tion alternatives is represented by a set of class values
concerning various features of the program, such as
concurrent behaviour, data dependences, multiplicity,
non-determinism and mutual exclusion.

The clustering process takes into account only one
alternative. The choice of some implementation al-
ternative as the current one can be made manually



Occam
program

Choosing the
current alternative

\ Design
', constraints

)

IClusten'ng I _ Joining

TTTTY

Other
alternative?

Implementation
Figure 2: The main tasks of our partitioning approach.

or automatically. When choosing automatically, the
alternatives leading to a balanced degree of parallel-
ism among the various statements and minimising the
area-delay cost function will be taken as the current
one.

Once a current implementation alternative was cho-
sen for each process, the clustering takes place. The
first step is the allocation of some process to the con-
trol unit, which means the implementation of such
process in software (see the underlying target archi-
tecture presented in Section 3.1. The allocation pro-
cess can also be controlled by the user or can be made
automatically guided by a cost function. The degree
of parallelism of the current implementation as well as
the minimisation of the area delay cost function will
be considered when analysing the software implemen-
tation of each process.

The partitioning of an occam program into a pro-
cess to be implemented in software and processes im-
plemented directly in hardware is achieved by a multi-
stage hierarchical clustering algorithm, which is based
on the algorithm described in [1]. The cost functions
have been slightly modified in order to take into ac-
count the communication overhead introduced for syn-
chronisation purposes.

At the first stage clusters are built according to
the similarity of the functionality of the processes and
the similarity of the degree of parallelism exhibited by
their current implementation alternative.

To build the cluster tree, a metric upon processes
(and their implementation alternatives) were defined

according to the following guidelines such as: process-
es exhibiting similar parallelisi degree are kept clos-
er to each other, processes with data dependency are
kept close to minimise synchronisation cost, mutually
exclusive processes exhibiting distinct degree of paral-
lelism are kept separate.

The function D(e;, e;) measuring the distance be-
tween the processes e; and e; is defined by Eq.(1). The
term fHierarchy(€i, €;) has been introduced in order to
take into account the communication cost introduced
when sequential processes with data dependences have
been split into parallel ones.

D(ei, €5) DgssType(€i, €5) + Dciassvar (€, €5)

+ inerarchy(eixej) (1)

Distances between each pair of processes build a
distance matrix, from which a cluster tree can be built.
The algorithm for building the cluster tree from a dis-
tance matrix can be found in [1]. For all clustering
sequences it is analysed whether resource should be
shared or not according to the minimisation of the
area/delay cost function given by Eq.(2).

AreaDelay = aln(Area) + B1In(Delay) (2)

The detection of the cut line at the clustering se-
quence s of the cluster tree ¢ is guided by the cost
function defined by Eq.(3):

Jeut1(8, €) = fripetineFiag(s, €) + fovanoc(s, c) +
fAreaDelay(s; C) (3)

The term fpipetineFiag (s, c) suggests that sequential
processes not suitable for a pipelining implementation
be kept in a cluster ( fripetineFiag (5, c) = 1) while those
entitled to pipelining and those assigned to different
functional units be kept separate (fpipeiineFiag (5,¢) =
00). This function is calculated concerning the costs
of a pipelining implementation against the obtained
speedup.

The function feu aiiec1(s,c) causes processes pre-
allocated to the control unit (i.e. implemented in
software) to be separate from processes assigned to
hardware. As already mentioned, good candidates for
software allocation are processes exhibiting least da-
ta dependences (to reduce the communication cost).
Among these processes, those which include parallel
assignments are more favoured since they could be ex-
ecuted in a single clock cycle in a super scalar pro-
cessor. Eventually, processes conformed to both the
above conditions and at the same time minimising the
area/delay cost are allocated to the control unit.

Finally, farcaDeiay(s,¢) evaluates the area/delay
cost concerning botfl dynamic and static resource
sharing returning co when resources are not shared.
The algorithm runs in a bottom-up fashion starting
with the clustering sequence generated by the split-

ting phase until fowe1(s +1,¢) > fouri(s,¢ ).



At the second stage, a new distance matrix for the
clusters (resulting from stage 1) is established and
from it a cluster tree is built. The goal of the clus-
tering at the second stage is to determine whether
asynchronous clusters will be implemented as pipelin-
ing, since pipelining is also accompanied by additional
delays. The generated clusters are finally allocated to
the underlying target architecture.

4 A Simple Case Study

The partitioning is carried out using a set of pro-
gram transformation rules whose application sequence
is controlled by the clustering process. Considering
the block diagram described in Figure 2, one might
see that the first step is the splitting of the description
into a set of communicating processes. After that, the
Jjoining of processes in clusters takes place when build-
ing the clustering tree and placing the cut line at each
clustering stage.

Here we illustrate this method through the parti-
tioning of a simple occam program into hardware and
software components. The strategy is to perform a
series of algebraic transformations on the original pro-
gram until we reach a program which models precisely
the behaviour of our target architecture. The presen-
tation below includes the macro steps of the develop-
ment process. The aim is to give an overview of the
kind of transformation employed. Strictly, every sin-
gle transformation must be justified by one algebraic
law; in Appendix A we show how some of the steps
can be carried out formally.

Our source program implements the convolution

given by Eq.(4) [4].

(4)

= Y mixwxa,1<i<an—1

i=ln

where w; is given by w;41 = bx zy x wj, and o; is
given by o; = ¢; + d; with

o fei>0 0 [ 2y ey 20
G = Zi fr; <0 L -ﬁjﬂ— if$i+1<0

The variables z;, y; and w; are global, with the values
of z; and w; being given by the environment. The
variable y; will be used by the environment. The en-
vironment is not relevant here and for the sake of sim-
plicity it is omitted in the occam description below.
Recall that we sometimes linearise occam syntax, as
explained in Section 2.

INT ¢, d :
[5] INT e :
SEQ i = 0 FOR 2
PAR
IF (x[i] >= 0 ¢ := x[i], (1)
x[i]l < 0 ¢ := x[i1/2)
IF (x[i] >= 0 d := x[i+1], (2)
x[i] < 0 @ := x[i+1]1/2)

214

PAR j =0 FOR 4
e[il:=x[5+ (i/( +((i + 1)/(i + 1))))
HG-i)lee
PAR
w =k * e[i]
PAR j =10 FOR 4
ylil = y[il + e[i] ¥ (c + q)

Splitting an Occam Program into a
Set of Concurrent Processes

As mentioned earlier, the first step in the partition-
ing process is the splitting of an initial occam program
into a set of processes. Before the splitting takes place
the current implementation alternative must be cho-
sen for each process in the original program. Further-
more, some process must be allocated to the control
unit.

According to the criteria described in the previous
section, either process (1) or process (2) could be im-
plemented in software. This analysis was made by con-
sidering the degree of parallelism exhibited by the cur-
rent implementation of each process and by analysing
the data dependences among them. For both pro-
cesses, the degree of parallelism is equal to one and
the number of data dependences between these and
other processes is minimal, leading to a minimisation
of communication costs. To start with we choose pro-
cess (1). The result of this transformation is given
below. We assign informally an identifier to each pro-
cess for further reference.

4.1

CHAN OF INT pl.p4, p2.p4, p4.p3 :
CHAN OF [5] INT p3.p4 :
PAR
-- software process pl
INT ¢ :
SEQ i = 0 FOR 2
IF (x[i]l >= 0 ¢ :=
pl.pd ! ¢

x[i), x[i] < 0 ¢ := x[i]/2)

-- process p2

INT d :

SEQ i = 0 FOR 2
IF (x[il >=04d

x[iJ <0 4
p2.pd ' d

x[i+1],
x[i+11/2)

—-- process p3

[6] INT e :

INT w :

SEQ i = 0 FOR 2
pd.p3 7w
PAR j =0

elj] :=
p3.p4 ! e

FOR 4
x[5*(i/ (G+((G+1)/(A+1))))+(j-1)] »w

-- process p4

INT c, 4 :

[5] INT e :

SEQ i = 0 FOR 2
pi.p3 ! w
PAR



AN

Stage Two

o

Stage One

Figure 3: The clustering phase

pl.p4 7 c
p2.p4 7 d
p3.p4 7 e
PAR
w =k * e[i]
PAR j = 0 FOR 4
y[31 := y[3] + e[j] * (c + @)

According to this program, the synchronisation be-
tween processes is achieved by introducing channels;
this allows message passing between processes with
data dependences. For example, there is a data de-
pendency between the processes (p1) and (p4). The
synchronisation between the two processes is achieved
by introducing a channel, p1.p4, in order to permit
message passing between them. As one might see,
the splitting of a description into concurrent process-
es leads to an increasing of the communication costs.
During the clustering phase this cost can be minimised
by keeping processes with data dependences in the
same cluster. This is equivalent to apply rules for
joining such processes.

4.2 The clustering guiding the joining of
process

The clustering algorithm groups processes in clus-
ters by building a clustering tree followed by the place-
ment of a cut line at some level of the tree. As
mentioned earlier, the criteria guiding the clustering
algorithm include similarity of the functionality and
of the implementation alternative (degree of paral-
lelism) associated with each process. Communication
and synchronisation costs are also taken into account
by considering data dependences between processes.
The parallelism improvernent through pipelining im-
plementations as well as the associated overhead are
also criteria considered by the clustering approach.
The clustering process of the occam description pre-
sented previously is depicted in Figure 3.

When building the clustering tree at stage one ac-
cording to Eq.(1), the processes p1 and p2 are the first
to be clustered (in this case they are serialised). The
reason is that the current implementation alternative
of both processes exhibits the same degree of paral-
lelism and process p2 is also a good candidate to be
implemented in software. Furthermore, keeping both
processes in the same cluster minimises the area-delay

215

cost function.

-- serialisation of pl and p2

INT ¢, 4 :

SEQ i = 0 FOR 2
IF (x[i]l >=0 ¢

x[i], x[i] < 0 ¢ := x[i]/2)

IF (x[i] >= 0 d := x[i+1],
x[i] <0 4 := x[i+1]1/2)

pl.pd ! c

p2.p4 ' d

The process p3 is not affected by this transformation.
The process p4 could be slightly changed to take the
above transformation into account: as c and d are now
produced in sequence, the commands p1.p4 7 ¢ and
p2.p4 7 d could be executed in sequence as well. This
brings no significant gain and is not performed here.

The partitioning criteria described earlier also sug-
gests that the processes p3 and p4 should be grouped
into a single cluster. This eliminates the communica-
tion between these processes since the array e and the
variable w can now be shared by p3 and p4. Further-
more, both processes execute serially and the similar-
ity of the current implementation alternative of both
processes (i.e. their degree of parallelism) as well as
the similarity of their functionality (both processes
performs multiplication and additionS suggests that
resource can be shared between these two processes
without delay increase.

The cluster tree is cut according to the minimisa-
tion of the cost function given by Eq.(3) resulting into
two clusters: one to be implemented in software and
another one to be implemented in hardware.

The result of the overall partitioning is given by the
following occam program.

CHAN OF INT pl.p4, p2.p4, p3.p4 :
PAR
-- software process (serialisation of pl and p2)
INT ¢, d :
SEQ i = 0 FOR 2
IF (x[i] >= 0 ¢ :=

x[i], x[i] < 0 ¢ := x[i1/2)

IF (x[i+1] >= 0 d := x[i+1],
x[i+1] < 0 d := x[i+1]1/2)

pl.pd ! c

p2.p4 ' d

-- hardware process (serialisation of p3 and p4)
INT ¢, d :

[5] INT e :
SEG i = 0 FOR 2
PAR
pl.p4d 7 ¢
p2.p4 7 d
PAR j = 0 FOR 4
elj] := x[5%(i/(G+((G+1)/(i+1))))+(j-1)]*w
PAR
w =k * e[i]

PAR j = O FOR 4
y[31 = y[3] + e[j] * (c + &)



5 Conclusions

In this paper we presented some ideas towards an
approach to provably correct hardware/software par-
titioning using occam; this was illustrated by a case
study. Although a simple example was considered, it
illustrates several aspects of the partitioning process.
It also allowed us to address correctness issues.

In the presented approach the hardware/software
partitioning of an occam program has been performed
by applying a set of rules on an initial occam descrip-
tion to obtain a set of processes, one of which is imple-
mented in software and the others in hardware. The
rules and the way they were applied were based on the
partitioning approach proposed by Barros [1, 2].

But the partitioning is only part of a system devel-
opment process. The software components generated
by the process should then be correctly compiled us-
ing, for example, the algebraic method presented in
[10, 12]. The hardware parts need also be correctly
compiled into some hardware description language;
this can be achieved by using, for example, the method
presented in [8]. The advantage of using the partition-
ing technique suggested in this paper together with
the software and hardware compilation methods cited
above is that they are all based on the same semantic
framework which is relatively simple: a programming
language and its algebraic laws.

Although we believe that the approach is very
promising, there is much work to be done to turn it in-
to a well-defined method. We need to define a normal
form to represent the result of the partitioning, and
discover a set of transformation rules which must be
complete in the sense that their application must allow
an arbitrary program be transformed into this normal
form. In particular, we need transformation rules for
loops and procedures. Each of these rules must be
proved from the more basic laws of occam. Further-
more, a more general target architecture model should
be considered in the partitioning process.

The ultimate goal is to code the transformations as
rewrite rules in an algebraic system such as OBJ3 [5].
This would enable us to mechanically check the cor-
rectness of each transformation; but most important-
ly, the rewrite rules would serve as a prototyping of a
system to perform the partitioning automatically.

A  Formal Justification of Some Trans-

formations

As explained in Section 2, the purpose here is only
to illustrate how some of the transformations can be
formally justified. We do not have the tools yet for
a detailed justification of every single transformation
involved in the partitioning task of the case study pres-
ented in Section 4. This will require the search for
more algebraic laws to deal with the operators not
addressed in [11].

The first step which splits the original program in-
to a number of communicating processes comprises a
large number of transformations and will not be ad-
dressed here. But in the following we give a more
detailed justification of the serialisation of processes
p1 and p2.

216

The splitting process generates four parallel pro-
cesses. As we are concerned with the serialisation of
the first two processes, we can use the associativity of
PAR (Law 6) and focus on these two processes.

PAR
INT ¢ :
SEQ 1 = 0 FOR 2

IF(x[i] >= 0 ¢ := x[i], x[i] < 0 ¢ := x[i]/2)
pl.pd ! c
INT 4 :
SEQ i = 0 FOR 2
IF(x[i+1] >= 0 d := x[i+1],
x[i+1] < 0 d := x[i+1]1/2)

p2.p4 ' d

As the variable c is not free in the second process and
d is not free in the first one, we can use Law 11 to
move their declarations out of the PAR construct. Fur-
thermore, note that each of these processes is in fact
an array of three processes which execute in sequence
(as the replicator index varies from 0 to 2). For each
iteration, both p1 and p2 execute a conditional which
determines the value of a variable which should be sent
to process p4. Then they both synchronise with p4 to
send this value. For any value assumed by the replica-
tor index the two conditionals are executed in parallel.
Thearefore in this particular case we distribute SEQ over
PAR”.

INT ¢, 4 :
SEQ i =0 FOR 2
PAR
SEQ
IF(x[i] >= 0 ¢ := x[i],
x[i] < 0 ¢ := x[i)/2)
pl.pd ! c
SEQ
IF(x[i+1] >= 0 d := x[i+1],
x[i+1] < 0 d := x[i+1]/2)

p2.pd ' d

Then we can apply Law 3 to distribute the SEQ oper-
ator leftward through each of the conditionals:

INT ¢, d :
SEQ i = 0 FOR 2
PAR
IF(x[i] >= 0 SEQ(c := x[il], p1.p4a ! ¢),
x[i] < 0 SEQ(c := x[il/2, pl.p4 ! <))

IF(x[i+1] >= 0 SEQ(d :
x[i+1] < 0 SEQU :=

x[i+1], p2.p4 ! 4),
x[i+1]1/2, p2.p4 ! d))

Now we can apply Law 8 to distribute PAR over the
first IF. This will cause the first IF to be the top level
command and each of its branches will be in parallel
with the second IF. Then we can use Law 7 (symmetry

3 A more detailed justification needs to take into account the
text of the process p4.



of PAR) and Law 8 again to distribute the internal
occurrences of PAR. The result is

INT ¢, d :
SEQ i = 0 FOR 2
IF(x[i] >= 0 IF(x[i+1] >= 0
PAR(SEQ(c:=x[i], p1.p4 ! c),
SEQ(d:=x[i+1], p2.p4 ! d))
x[i+1] < 0
PAR(SEQ(c:=x[i], pl.p4 ! <),
SEQ(d:=x[i+11/2, p2.p4 ! d)
x[i] < 0 IF(x[i+1] >= 0

PAR(SEQ(c:=x[i]1/2, p1.p4 ! <),
SEQ(d:=x[i+1], p2.p4 ! d))

x[i+1] < 0

PAR(SEQ(c:=x[i]/2, pl.p4 ! c),
SEQ(d:=x[i+11/2,p2.p4 ! d)))

Law 9 allows the serialisation of the assignment
c:=x[i], and we can use Law 2 to move it out of
the first internal IF. The same laws justify moving
the assignment c:=x[1]/2 out of the second internal
IF. This will cause the two internal IF commands to
be identical; therefore we can apply Law 3 to unnest
the internal IFs. These transformations result in

INT ¢, d :
SEQ i = 0 FOR 2
IF(x[i]l >= 0 ¢
x[il] <0 ¢
IF(x[i+1] >= 0

x[i],

x[i1/2)

PAR(pl.p4 ! ¢,
SEQ(d := x[i+1], p2.p4 ! d))
x[i+1} < 0
PAR(pl.p4 ! ¢,
SEQ(d := x[i+1] / 2, p2.p4 ! d)))

Then we again serialise the assignments in the latter
IF (using Law 9) and repeat the step above (Law 3):

INT ¢, d :

SEQ i = 0 FOR 2
IF(x[i] >= 0 c:=x[i], x[i] < 0 c:=x[i]/2)
IF(x[i+1] >= 0 d:=x[i], x[i+1] < 0 d:=x[i]/2)
PAR(pl.p4 ! c, p2.pd ! d)

The only remaining step is the serialisation of the
two output commands above. Unlike assignment,
there is no independent law to serialise a communi-
cation command, and a careless transformation may
lead to deadlock. In the case study presented in
Section 4 it is valid to transform the above paral-
lel command into SEQ(p1.p4 ! ¢, p2.p4 ! d) or into
SEQ(p2.p4 ! d, pl.p4 ! c), because the correspond-
ing input commands are in parallel (see process p4 in
Section 4).

References

[1] E. Barros. Hardware/Software Partitioning using
UNITY. PhD thesis, Universitat Tiibingen, 1993.

217

[2] E. Barros, X. Xiong, and W. Rosenstiel.
Hardware/Software Partitioning with UNITY.
In  Handouts of International Workshop on
Hardware-Software Co-design, 1993.

R. Ernst and J. Henkel. Hardware-Software
Codesign of Embedded Controllers Based on
Hardware Extraction. In Handouts of the In-
ternational Workshop on Hardware-Software Co-
Design, October 1992.

[4] G.Fox, M. Johson, and G. Lysenga. Solving Prob-
lems on Concurrent Processors. Prentice-Hall In-
ternational Editions, 1988.

[5] J. Goguen et al. Introducing obj. Technical re-
port, SRI International, 1993. To appear.

[6] M. Goldsmith. The oxford occam transforma-
tion system. Technical report, Oxford University
Computing Laboratory, January 1988.

[7] R. Gupta and G. De Micheli. System-level Syn-

thesis Using Re-programmable Components. In

Proceedings of EDAC, pages 2-7, 1992.

(8

s

Jifeng He, I. Page, and J. Bowen. A provably cor-
rect hardware implementation of occam. Techni-
cal report, ProCoS Project Document [OU HIF
9/5], Oxford University Computing Laboratory,
November 1992.

C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International, 1985.

[10] C. A. R. Hoare, J. He, and A. Sampaio. Normal
form approach to compiler design. Acte Infor-
matica, 30:701-739, 1993.

A. Roscoe and C. A. R. Hoare. The laws of oc-
cam programming. Theoretical Computer Sci-
ence, 60:177-229, 1988.

(11]

[12] A. Sampaio. An Algebraic Approach to Compiler
Design. PhD thests, Oxford University Comput-

ing Laboratory, 1993.



